Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Chem Commun (Camb) ; 60(31): 4250-4253, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38530742

RESUMO

An instant p-doping strategy employing 4-tert-butyl-2-chloropyridine and tert-butyl peroxybenzoate for the spiro-OMeTAD hole-transport layer (HTL) in perovskite solar cells (PSCs) is proposed to replace the conventional 4-tert-butylpyridine-doped HTL. The novel doping process eliminates the formation of pores in the HTL. Meanwhile, a 21.4% efficiency is achieved on the corresponding absolute methylammonium-free PSCs with significantly improved thermal and moisture stability.

2.
Heliyon ; 10(1): e23353, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38226275

RESUMO

Background: Hypochloremia and red blood cell distribution width (RDW) play important roles in congestive heart failure (CHF) pathophysiology, and they were associated with the prognosis of CHF. However, the prognostic value of chloride combined with RDW in patients with CHF remains unknown. Methods: We retrospectively analyzed critically ill patients with CHF. The database was derived from the Medical Information Mart for Intensive Care IV v2.0 (MIMIC-IV-v2.0) database. Results: In the final analysis, 5376 critically ill patients with CHF were included, and 2428 patients (45.2 %) experienced 5-year mortality. The restricted cubic spline model revealed a positive correlation between RDW and 5-year mortality, whereas chloride showed a U-shaped correlation with 5-year mortality. The median values of RDW and chloride were used to classify patients into four groups: high chloride/low RDW, low chloride/low RDW, high chloride/high RDW, and low chloride/high RDW. We observed the prognostic value of RDW combined with chloride in the Cox proportional hazard model, in predicting 5-year mortality, in-hospital mortality and 1-year mortality. Furthermore, we discovered that patients with chronic kidney disease (CKD) had a higher 5-year mortality risk than patients without CKD. Conclusion: We found the translational potential role of chloride combined with RDW in prioritizing patients at high risk for short- and long-term mortality in a cohort of critically ill patients with CHF. Prospective multicenter investigations are warranted to validate our results.

3.
Chem Commun (Camb) ; 60(11): 1460-1463, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38223975

RESUMO

Grain boundaries of metal halide perovskites contain massive defects that are detrimental to photovoltaics applications. This work demonstrates that inorganic NH4NO3 can selectively passivate the grain boundaries of perovskite films and improve their moisture resistance simultaneously, resulting in enhanced performance and stability of the methylammonium-free perovskite solar cells.

4.
Colloids Surf B Biointerfaces ; 234: 113674, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38039823

RESUMO

Electrospun fibers have gained significant attention as scaffolds in skin tissue engineering due to their biomimetic properties, which resemble the fibrous extracellular matrix. The morphological characteristics of electrospun fibers play a crucial role in determining cell behavior. However, the effects of electrospun fibers' arrangement and diameters on human skin fibroblasts (HSFs) remain elusive. Here, we revealed the impact of electrospun fiber diameters (700 nm, 2000 nm, and 3000 nm) on HSFs' proliferation, migration, and functional expression. The results demonstrated that all fibers exhibited good cytocompatibility. HSFs cultured on nanofibers (700 nm diameter) displayed a more dispersed and elongated morphology. Conversely, fibers with a diameter of 3000 nm exhibited a reduced specific surface area and lower adsorption of adhesion proteins, resulting in enhanced cell migration speed and effective migration rate. Meanwhile, the expression levels of migration-related genes and proteins were upregulated at 48 h for the 3000 nm fibers. This study demonstrated the unique role of fiber diameters in controlling the physiological functions of cells, especially decision-making and navigating migration in complex microenvironments of aligned electrospun fibers, and highlights the utility of these bioactive substitutes in skin tissue engineering applications.


Assuntos
Nanofibras , Tecidos Suporte , Humanos , Engenharia Tecidual/métodos , Proteínas , Matriz Extracelular , Movimento Celular , Proliferação de Células , Poliésteres/farmacologia
5.
Zhongguo Gu Shang ; 36(12): 1203-6, 2023 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-38130233

RESUMO

The multidisciplinary treatment model led by surgery has become a comprehensive strategy and overall concept for the treatment of spinal metastatic tumors. But the surgical treatment of spinal metastatic tumors is different from primary malignant tumors of the spine. Surgery is only a part of the multidisciplinary comprehensive treatment. Therefore, the following aspects need to be evaluated comprehensively based on the survival assessment, evaluation of spinal stability damage, nerve dysfunction, and oncological characteristics of the metastatic tumors with a reasonable surgical intervention. The attention should be paid to the minimally invasive treatment of spinal metastases, progress of new radiotherapy technology, neoadjuvant chemotherapy, targeted drug therapy and other medical treatment to make a comprehensive and individualization decision which is benefit to relieve patients ' pain, reconstruct spinal stability and avoid paralysis. While improving patient survival, increasing local tumor control rate and possibly prolonging survival time, avoiding excessive surgery as much as possible.


Assuntos
Neoplasias da Coluna Vertebral , Coluna Vertebral , Humanos , Coluna Vertebral/cirurgia , Neoplasias da Coluna Vertebral/cirurgia
6.
J Phys Chem Lett ; 14(48): 10754-10761, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38010946

RESUMO

The performance loss caused by encapsulation has been an obstacle to guarantee the excellent power conversion efficiency of perovskite solar cells (PSCs) in practical application. This work revealed that the encapsulation-induced performance loss is highly related to the tensile strains imposed on the functional layers of the device when the PSC is exposed directly to the deformed encapsulant. A barrier strategy is developed by employing a nonadhesive barrier layer to isolate the deformed encapsulant from the PSC functional layer, achieving a strain-free encapsulation of the PSCs. The encapsulated device with a barrier layer effectively reduced the relative performance loss from 21.4% to 5.7% and dramatically improved the stability of the device under double 85 environment conditions. This work provides an effective strategy to mitigate the negative impact of encapsulation on the performance of PSCs as well as insight into the underlying mechanism of the accelerated degradation of PSCs under external strains.

7.
Nat Sci Sleep ; 15: 729-736, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37753520

RESUMO

Purpose: This study aims to examine the impact of sleep deprivation on individual cognitive reappraisal ability using a standardized behavioral paradigm. Methods: A randomized pretest-posttest control group design was conducted. Thirty-nine participants were eventually enrolled and randomly assigned to receive either the sleep control (SC: n = 17) or the sleep deprivation (SD: n = 22). Both of them were required to perform a standardized behavioral paradigm of measuring cognitive reappraisal ability one time under sleep-rested condition and another time under the condition of different sleep manipulation a week later. Results: Mean valence ratings of SD group were more negative than SC group's (p < 0.05) and mean arousal ratings of SD group were higher than SC group's (p < 0.01). Conclusion: Sleep deprivation may impair individual cognitive reappraisal ability and could potentially undermine the efficacy of cognitive therapy in terms of emotion regulation.

8.
J Clin Pharmacol ; 63(12): 1344-1351, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37408508

RESUMO

Renal dysfunction is associated with increased mortality and length of hospital stay in critically ill patients. However, it remains unclear whether the early administration of an angiotensin-converting enzyme inhibitor (ACEI)/angiotensin receptor blocker (ARB) for intensive care unit patients with renal dysfunction is associated with reduced in-hospital mortality. We conducted a retrospective analysis of critically ill patients who received early administration of an ACEI/ARB within 72 hours after being hospitalized. Patients were selected from the Medical Information Mart for Intensive Care IV database. We included 18,986 critically ill patients in our analysis. After propensity score matching, our final study cohort of 4974 patients consisted of patients who received early administration of an ACEI/ARB (n = 2487) and nonusers (n = 2487). Results of logistic regression showed that early administration of an ACEI/ARB was associated with reduced risk of in-hospital mortality (odds ratio, 0.64; 95% confidence interval, 0.53-0.77; P < .001) and intensive care unit death (odds ratio, 0.56; 95% confidence interval, 0.45-0.70; P < .001) when compared to nonusers. There was no meaningful interaction for early administration of an ACEI/ARB versus nonusers across estimated glomerular filtration rate in outcomes. Sensitivity analysis showed there was no difference in the outcomes between early administration of ACEI and that of ARB. In this study, we found that early administration of an ACEI/ARB was associated with a reduced risk of in-hospital adverse outcomes based on renal function among critically ill patients. There was no interaction between early administration of an ACEI/ARB and in-hospital adverse outcomes across estimated glomerular filtration rate.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Nefropatias , Humanos , Inibidores da Enzima Conversora de Angiotensina/efeitos adversos , Estudos Retrospectivos , Antagonistas de Receptores de Angiotensina/efeitos adversos , Estado Terminal , Nefropatias/induzido quimicamente , Hospitais , Cuidados Críticos , Rim/fisiologia
9.
Arch Biochem Biophys ; 744: 109698, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487948

RESUMO

Numerous epidemiological studies suggest a link between Parkinson's disease (PD) and cancer, indicating that PD-associated proteins may mediate the development of cancer. Here, we investigated a potential role of PD-associated protein α-synuclein in regulating liver cancer progression in vivo and in vitro. We found the negative correlation of α-synuclein with metabotropic glutamate receptor 5 (mGluR5) and γ-synuclein by analyzing the data from The Cancer Genome Atlas database, liver cancer patients and hepatoma cells with overexpressed α-synuclein. Moreover, upregulated α-synuclein suppressed the growth, migration, and invasion. α-synuclein was found to associate with mGluR5 and γ-synuclein, and the truncated N-terminal of α-synuclein was essential for the interaction. Furthermore, overexpressed α-synuclein exerted the inhibitory effect on hepatoma cells through the degradation of mGluR5 and γ-synuclein via α-synuclein-dependent autophagy-lysosomal pathway (ALP). Consistently, in vivo experiments with rotenone-induced rat model of PD also confirmed that, upregulated α-synuclein in liver cancer tissues through targeting on mGluR5/α-synuclein/γ-synuclein complex inhibited tumorigenesis involving in ALP-dependent degradation of mGluR5 and γ-synuclein. These findings give an insight into an important role of PD-associated protein α-synuclein accompanied by the complex of mGluR5/α-synuclein/γ-synuclein in distant communications between PD and liver cancer, and provide a new strategy in therapeutics for the treatment of liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Doença de Parkinson , Animais , Ratos , alfa-Sinucleína/metabolismo , Autofagia/fisiologia , Carcinogênese , Transformação Celular Neoplásica , gama-Sinucleína/genética , gama-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Receptor de Glutamato Metabotrópico 5/genética , Receptor de Glutamato Metabotrópico 5/metabolismo , Regulação para Cima , Humanos
10.
Small ; 19(46): e2303060, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37452440

RESUMO

Perovskite solar cells have rapidly developed as a promising technology for the next generation of low-cost photovoltaics, receiving enormous attention from researchers and industries. Compared to traditional semiconducting materials, metal halide perovskite exhibits outstanding tolerance to extrinsic ions. At a certain range of doping concentration, the interstitial occupancy of extrinsic ions provides appealing benefits to the perovskite films, contributing to higher performance and stability of the devices. This review summarizes the research progress of interstitial ions for metal halide perovskite, providing insights into the mechanism and identification of interstitial doping of extrinsic ions, covering the benefits of interstitial ions in regulating crystal growth, inhibiting ion migration, and reducing defect density. Finally, based on the latest progress and findings, further topics and directions of research on interstitial ions in metal halide perovskite are proposed to advance the understanding of interstitial ions in perovskite and promote the development of perovskite photovoltaic technology.

11.
Mol Carcinog ; 62(8): 1163-1175, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37144864

RESUMO

Numerous epidemiological studies suggest a link between Parkinson's disease (PD) and cancer. However, their relevant pathogenesis is not clear. In the present study, we investigated the potential role of exosome-delivered α-synuclein (α-syn) in the regulation between PD and liver cancer. We cultured hepatocellular carcinoma (HCC) cells with exosomes derived from conditioned medium of the PD cellular model, and injected exosomes enriched with α-syn into the striatum of a liver cancer rat model. We found that α-syn-contained exosomes from the rotenone-induced cellular model of PD suppressed the growth, migration, and invasion of HCC cells. Integrin αVß5 in exosomes from the rotenone-induced PD model was higher than that in the control, resulting in more α-syn-contained exosomes being taken up by HCC cells. Consistently, in vivo experiments with rat models also confirmed exosome-delivered α-syn inhibited liver cancer. These findings illustrate the important role of PD-associated protein α-syn inhibiting hepatoma by exosome delivery, suggesting a new mechanism underlying the link between these two diseases and therapeutics of liver cancer.


Assuntos
Carcinoma Hepatocelular , Exossomos , Neoplasias Hepáticas , Doença de Parkinson , Animais , Ratos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Carcinoma Hepatocelular/patologia , Exossomos/metabolismo , Neoplasias Hepáticas/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Rotenona/farmacologia , Humanos
12.
Chemistry ; 29(37): e202300576, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37162488

RESUMO

In order to promote the commercialization of perovskite solar cells, gas-quenching is considered to be a promising technique for perovskite film fabrication. However, when handling with methylammonium-free (MA-free) perovskites, it is often difficult to obtain high-quality perovskite films by gas-quenching. Herein, formate additives are employed to regulate the crystallization of MA-free perovskite, and improve the quality of perovskite films. Different additives of formamidine formate (FAFO) and potassium formate (KFO) is compared to investigate the role of formate groups in the crystallization of perovskite films prepared by gas-quenching. The FAFO additive facilitates the perovskite crystallization in (001) orientation whereas KFO favors for (111) orientation. The MA-free device with addition of FAFO demonstrate a champion power conversion efficiency of 20.94 %, compared to that of 20.14 % for KFO devices. In addition, FAFO device also exhibits improved thermal stability in ambient condition without encapsulation, extending the T80 lifetime by 18 times compared to the pristine device.

13.
Org Biomol Chem ; 21(16): 3453-3464, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37039337

RESUMO

A series of iso-allo-DNJ and L-isoDALDP derivatives were synthesized from dithioacetal 16 with sequential and highly diastereoselective Ho and Henry reactions, and aziridinium intermediate-mediated ring rearrangement as key steps. Glycosidase inhibition assay found four of them as selective α-glucosidase inhibitors, and the less substituted compound 30 showed more potent α-glucosidase inhibition (IC50 = 9.3 µM) than the others. Molecular docking study revealed different docking modes of the iso-allo-DNJ and L-isoDALDP derivatives from their parent compounds, and also the similarity of compound 30 to isofagomine.


Assuntos
Inibidores de Glicosídeo Hidrolases , alfa-Glucosidases , alfa-Glucosidases/metabolismo , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Inibidores de Glicosídeo Hidrolases/farmacologia , Glicosídeo Hidrolases , Estrutura Molecular
14.
Cell Biol Int ; 47(1): 216-227, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36193698

RESUMO

Zoledronate (ZOL) were found to inhibit bone resorption in an animal model of diabetes, high glucose concentrations have been shown to decreased the osteogenesis-related gene expression. But the molecular mechanism by which high glucose levels affect osteoblasts and the effects of ZOL on osteoblast differentiation in a high-glucose environment remain unclear. Therefore, we aimed to investigate the effect of ZOL on osteoblast differentiation in a high-glucose environment and determine the responsible mechanism. Cell proliferation was detected by MTT assay, and cell differentiation was evaluated by immunofluorescence staining for alkaline phosphatase expression, alizarin red staining, cytoskeletal arrangement, and actin fiber formation. Real-time PCR and western blot analyses were performed to detect the mRNA and protein expression of p38MAPK, phosphorylated (p)-p38MAPK, CREB, p-CREB, collagen (COL) I, osteoprotegerin (OPG), and RANKL. The results showed that cell proliferation activity did not differ among the groups. But high glucose inhibited osteoblast differentiation; actin fiber formation; and p38MAPK, p-p38MAPK, CREB, p-CREB, COL I, and OPG expression, while promoting RANKL expression. However, we found that treatment with ZOL reversed these effects of high glucose. And further addition of a p38MAPK inhibitor led to inhibition of osteoblast differentiation and actin fiber formation, and lower p38MAPK, p-p38MAPK, CREB, p-CREB, COL I, and OPG expression than in the high glucose +ZOL group with higher RANKL expression than in the high glucose +ZOL group. Collectively, this study demonstrates that high glucose inhibits the differentiation of osteoblasts, and ZOL could partly overcome these effects by regulating p38MAPK pathway activity.


Assuntos
Osteogênese , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Ácido Zoledrônico/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Actinas/metabolismo , Diferenciação Celular , Osteoblastos/metabolismo , Osteoprotegerina/metabolismo , Glucose/metabolismo , Ligante RANK/metabolismo
15.
Macromol Rapid Commun ; 44(7): e2200803, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36519731

RESUMO

Metallic Li is considered the most promising anode material for high-energy-density batteries owing to its high theoretical capacity and low electrochemical potential. However, inhomogeneous lithium deposition and uncontrollable growth of lithium dendrites result in low lithium utilization, rapid capacity fading, and poor cycling performance. Herein, two sulfonated covalent organic frameworks (COFs) with different sulfonated group contents are synthesized as the multifunctional interlayers in lithium metal batteries. The sulfonic acid groups in the pore channels can serve as Li-anchoring sites that effectively coordinate Li ions. These periodically arranged subunits significantly guide uniform Li-ion flux distribution, guarantee smooth Li deposition, and reduce lithium dendrite formation. Consequently, these characteristics afford an excellent quasi-solid-state electrolyte with a high ionic conductivity of 1.9 × 10-3  S  cm-1 at room temperature and a superior Li++ transference number of 0.91. A Li/LiFePO4 battery with the COF-based electrolyte exhibited dendrite-free Li deposition during the charge process, accompanied by no capacity decay after 100 cycles at 0.1 C.


Assuntos
Lítio , Estruturas Metalorgânicas , Metais , Íons , Alcanossulfonatos , Eletrodos
16.
J Colloid Interface Sci ; 633: 177-188, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36446210

RESUMO

In this work, different BiOBr powders (without and with Zn doping) were prepared. Their specific properties and photocatalytic performance were studied. Zn doped BiOBr showed higher carrier transportation ability, beneficial to high performance photocatalysis. Further analysis and theoretical calculations unveiled that Zn doping resulted in more dispersive energy band structure with improved oxygen vacancy (OV) generation due to lattice distortion. OV acted as trap centers, playing dominant role in carrier transportation enhancement, which also synergized with more dispersive energy band due to Zn doping, improving carrier separation and transfer. Besides, Zn doping would further strengthen trapping effect under OV existence, stimulating synergistic enhancement to spatial charge separation and transfer with OV. With synergy of Zn doping and OV, Zn doped samples produced 1.75 times higher CH4 generation during gas-solid photocatalytic reduction of CO2 under visible light, testifying successful conducting of Zn doping improved photocatalytic capacity on BiOBr.

17.
Polymers (Basel) ; 14(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36433156

RESUMO

As tissue regeneration material, electrospun fibers can mimic the microscale and nanoscale structure of the natural extracellular matrix (ECM), which provides a basis for cell growth and achieves organic integration with surrounding tissues. At present, the challenge for researchers is to develop a bionic scaffold for the regeneration of the wound area. In this paper, polyurethane (PU) is a working basis for the subsequent construction of tissue-engineered skin. poly(L-lactide-co-caprolactone) (PLCL)/carboxymethyl chitosan (CMCS) composite fibers were prepared via electrospinning and cross-linked by glutaraldehyde. The effect of CMCS content on the surface morphology, mechanical properties, hydrophilicity, swelling degree, and cytocompatibility were explored, aiming to assess the possibility of composite scaffolds for tissue engineering applications. The results showed that randomly arranged electrospun fibers presented a smooth surface. All scaffolds exhibited sufficient tensile strength (5.30-5.60 MPa), Young's modulus (2.62-4.29 MPa), and swelling degree for wound treatment. The addition of CMCS improved the hydrophilicity and cytocompatibility of the scaffolds.

18.
Int J Mol Sci ; 23(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36430476

RESUMO

The good treatment of skin defects has always been a challenge in the medical field, and the emergence of tissue engineering skin provides a new idea for the treatment of injured skin. However, due to the single seed cells, the tissue engineering skin has the problem of slow vascularization at the premonitory site after implantation into the human body. Cell co-culture technology can better simulate the survival and communication environment of cells in the human body. The study of multicellular co-culture hopes to bring a solution to the problem of tissue engineering. In this paper, human skin fibroblasts (HSFs) and human vascular endothelial cells (HVECs) were co-cultured in Transwell. The Cell Counting Kit 8 (CCK8), Transwell migration chamber, immunofluorescence, Western blot (WB), and real time quantitative PCR (RT-qPCR) were used to study the effects of HVECs on cell activity, migration factor (high mobility group protein 1, HMGB1) and vascularization factor (vascular endothelial growth factor A, VEGFA and fibroblast growth factor 2, FGF2) secretion of HSFs after co-cultured with HVECs in the Transwell. The biological behavior of HSFs co-cultured with HVECs was studied. The experimental results are as follows: (1) The results of cck8 showed that HVECS could promote the activity of HSFs. (2) HVECs could significantly promote the migration of HSFs and promote the secretion of HMGB1. (3) HVECs could promote the secretion of VEGFA and FGF2 of HSFs. (4) The HVECs and HSFs were inoculated on tissue engineering scaffolds at the ratio of 1:4 and were co-cultured and detected for 7 days. The results showed that from the third day, the number of HSFs was significantly higher than that of the control group without HVECs.


Assuntos
Células Endoteliais , Proteína HMGB1 , Humanos , Técnicas de Cocultura , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína HMGB1/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibroblastos/metabolismo
19.
Biochem Biophys Res Commun ; 636(Pt 1): 75-83, 2022 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-36332485

RESUMO

AIM: During hypertension-induced endothelial dysfunction, periodic mechanical stretching (MS) activates related inflammatory pathways and leads to endothelial damage, but the underlying mechanisms remain unknown. The present study aimed to determine the injury of HUVECs caused by overstretching and the role of HMGB1-RAGE pathway in HUVECs after injury. MAIN METHODS AND KEY FINDINGS: Human umbilical vein endothelial cells (HUVECs) were cultured and seeded in BioFlex™ plates (six wells). Cells were exposed to 5% (physiological state) and 20% (pathological state) mechanical stretch at 1 Hz for 12 or 24 h in a Flexcell-5000™, with unstretched cells serving as controls. It was found that excessive MS can inhibit cell viability, proliferation, and tube-forming ability resulting in disordered cell arrangement and orientation, slowing cell migration. All these changes cause endothelial damage compared to physiological MS. Endothelial cells (ECs) promote cell migration and self-repair after injury by increasing the High-mobility group box 1 (HMGB1) expression. Experiments and protein prediction networks have shown that HMGB1 can also promote the expression of downstream protein bFGF by binding to receptor for advanced glycation end products (RAGE). Interestingly, VEGF protein expression did not change significantly during this repair process, implying that bFGF replaces the role of VEGF in vascular endothelial repair. SIGNIFICANCE: The present study demonstrates that in the context of endothelial injury caused by excessive MS, the HMGB1/RAGE/bFGF pathway is activated and promotes endothelial repair after injury. Therefore, understanding these mechanisms will help find new therapies for diseases such as hypertension, atherosclerosis, and aneurysm formation.


Assuntos
Proteína HMGB1 , Hipertensão , Humanos , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Proteína HMGB1/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fator A de Crescimento do Endotélio Vascular , Transdução de Sinais , Fator 2 de Crescimento de Fibroblastos
20.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232342

RESUMO

In order to find a convenient and stable way to trace human skin fibroblasts (HSFs) in three-dimensional tissue engineering scaffolds for a long time, in this experiment, Graphene Oxide Quantum Dots (GOQDs), Amino Graphene Quantum Dots (AGQDs) and Carboxyl Graphene Quantum Dots (CGQDs) were used as the material source for labeling HSFs. Exploring the possibility of using it as a long-term tracer of HSFs in three-dimensional tissue engineering scaffolds, the contents of the experiment are as follows: the HSFs were cultured in a cell-culture medium composed of three kinds of Graphene Quantum Dots for 24 h, respectively; (1) using Cell Counting Kit 8 (CCK8), Transwell migration chamber and Phalloidin-iFlior 488 to detect the effect of Graphene Quantum Dots on the biocompatibility of HSFs; (2) using a living cell workstation to detect the fluorescence labeling results of three kinds of Graphene Quantum Dots on HSFs, and testing the fluorescence attenuation of HSFs for 7 days; (3) the HSFs labeled with Graphene Quantum Dots were inoculated on the three-dimensional chitosan demethylcellulose sodium scaffold, and the living cell workstation was used to detect the spatial distribution of the HSFs on the three-dimensional scaffold through the fluorescence properties of the HSFs.. Experimental results: (1) the results of CCK8, Transwell migration, and FITC-Phalloidin cytoskeleton test showed that the three kinds of Graphene Quantum Dots had no effect on the biological properties of HSFs (p < 0.05); (2) the results of the fluorescence labeling experiment showed that only AGQDs could make HSFs fluorescent, and cells showed orange−red fluorescence; (3) the results of long-range tracing of HSFs which were labeled by with AGQDs showed that the fluorescence life of the HSFs were as long as 7 days; (4) The spatial distribution of HSFs can be detected on the three-dimensional scaffold based on their fluorescence properties, and the detection time can be up to 7 days.


Assuntos
Quitosana , Grafite , Pontos Quânticos , Fibroblastos , Fluoresceína-5-Isotiocianato , Humanos , Faloidina , Sódio , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...